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Three-dimensional fluid flow and heat transfer in an eccentric thermosyphon rotating 
about a vertical axis parallel to its own centerline are explored numerically using the 
SIMPLE-C algorithm under steady, laminar flow conditions. Results have been obtained 
for Rayleigh numbers up to 106 and Ekman numbers down to 2 × 10 -3. The effects of 
acceleration ratio and eccentricity are discussed. Special attention has been paid to the effect 
of the Coriolis force on the flow pattern and heat transfer rate. 
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I n t r o d u c t i o n  

Even though the thermosyphon was first suggested for the 
cooling of high-temperature gas turbine blades over 50 years 
ago, the literature on rotating thermosyphons is not extensive. 
In recent years, some attention has been directed towards 
evaporative systems, the principal aim being the acquisition of 
empirical data for use in an engineering context. Very little has 
been written on single-phase behavior. In particular, we know 
of no theoretical work dealing with natural convection in an 
eccentric rotating closed tube. 

When an eccentric thermosyphon rotates about a vertical 
axis parallel to its own centerline, the centrifugal force will 
create a body force field similar to that in a horizontal stationary 
cavity. Such cavities have been widely studied because of the 
importance of convection in thermal insulation, metal casting, 
and crystallization phenomena. The works of Cormack, Leal 
and Imberger (1974), Cormack, Leai, and Seinfield (1974), 
and Imberger (1974) provide an appropriate point of departure. 
These were analytic, numerical, and experimental studies of a 
two-dimensional (2-D) closed rectangular cavity with the two 
end walls being held at different temperatures and the side walls 
being adiabatic. The characteristic flow structure within these 
slender cavities was revealed : a central bifilamental core region 
of essentially parallel opposing flows joins two end regions. 
These findings were supported later by the analysis of Bejan 
and Tien (1978a, 1978b) using conducting side walls. 

Experimental results for the free convective flow of gases in 
a horizontal cylinder with different end temperatures and a 
linear temperature distribution along the side wall were 
reported by Schiroky and Rosenberger (1984) using a 
laser-Doppler anemometer. It was found that the velocity 
profiles in the central region near the midlength point were the 
same as expected from 2-D models, at least for low Rayleigh 
numbers; for the end regions, pronounced three-dimensional 
(3-D) flow behavior was observed. 
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Bontoux et al. (1986) carried out a more detailed 3-D 
numerical study of flows in circular cylindrical cavities. They 
revealed the existence of a paired vortical secondary flow in 
the midplane. 

Recently, Han (1988), Lock and Han (1989), and Lock and 
Zhao (1992) carried out 3-D numerical studies on buoyant 
laminar flows in an inclined, square-section cavity. Complete 
heat transfer curves from the conduction regime to the impeded 
flow regime were given. It was found that a secondary motion 
in the form of a vortex pair developed within the core filament 
in the impeded regime. This secondary flow was found to 
produce a significant increase in heat transfer rate. When the 
cavity was inclined to the horizontal position, an annular 
refluent flow was gradually developed at the end region, and 
the bifilamental flow was maintained in the central region. The 
heat transfer rate increased first and then dropped down when 
the tilt angle increased from 0 ° to 90 °. 

The present paper is a numerical study of the flow pattern 
in a closed, square-section, tubular thermosyphon rotating 
about a vertical axis parallel to its own axis. The governing 
equations for steady, laminar flow were first recast in 
finite-difference form and then solved numerically using a 
modified version of the SIMPLE algorithm. 

F o r m u l a t i o n  

The geometry and orientation of the thermosyphon is described 
in Figure 1, which also indicates a Cartesian coordinate system 
rotating synchronously with the system itself. The thermo- 
syphon is heated from below and cooled at the top. A linear 
temperature distribution is applied between the two ends. The 
aspect ratio of the system A = L / D  was fixed at 5:1. Under 
steady, laminar conditions, and using the Boussinesq 
approximation, the governing equations can be written in 
component form using the Cartesian coordinate system 
indicated in Figure 1. Thus, 

~U c~V dW 
- - + - - + - - = 0  (1) 
dX c3y cgZ 
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Figure I Orientation and coordinate system for a vertical eccentric 
thermosyphon 
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L D D 

U V W 
U - -  V = - -  W = - -  

AF F F 
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where 
F = [f l (T n - T0)f~2(~l + D)D] 1/2 

(6) 

and T O = ( T  n + T L ) / 2  
(7) 

the above equations may now be written in nondimensionalized 
form as follows: 
~u ~v aw 
- - + - - + - - = 0  
Ox Oy Ox 

0u Ou 0u 
U - - + V - - + W - - =  - - - - - -  

OX Oy Oz 

(8) 

1 0p 
A 2 ax 

/'2Pr'~x/2V 1 ( ~ 2 U  0 2 U  0 2 1 / - ]  

1 
+ q~ (9) 

ARg 

0v 0v 0v 0p [2Pr~a/2F 1 02v 0 2 1 )  0 2 D - I  
u - - W V  + w  . . . .  + / / / + - - +  - - I  

az ay ay az J 

( R ~ + ; )  ( 2 P r  y /2  w 
- ~ + \Ra  Ek2J (10) 

N o t a t i o n  

T 
U(u) 
v ( v )  
W(w) 
X ( x )  

A Surface area, aspect ratio 
D Length in the Y- and Z-directions 
Ek Ekman number 
g Gravitational acceleration 
k Thermal conductivity 
L Length in X-direction 
Nu Nusselt number 
P(p) Absolute (nondimensional) pressure 
Pr Prandtl number 
Q Total heat flux through the system 
Ra Rayleigh number 
Rg Acceleration ratio 
R~ Length ratio 
ffi Distance from the axis of rotation to the tube inner 

surface 
Temperature 
Velocity (nondimensional) in the X-direction 
Velocity (nondimensional) in the Y-direction 
Velocity (nondimensional) in the Z-direction 
Coordinate (nondimensional) 

Y(y )  Coordinate (nondimensional) 
Z(z )  Coordinate (nondimensional) 

Greek symbols 

fl Thermal expansion coefficient 
x Thermal diffusivity 
v Dynamic viscosity 
p Density 
~b Normalized temperature 

Rotating speed 

Subscripts 

0 Reference state 
H High temperature 
L Low temperature 

Superscript 

c Characteristic scale 
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Table 1 The effect of mesh size on Nusselt number 

Grid Nu ANu/Nu (%)  

FPS-164 
Scientific Computer 
IBM Risc 6000 

51 x 1 5 x  15 2.3019 - 
77 x 23 x 23 2.2746 - 1 . 2  
51 x 23 x 23 2.3043 0.1 
51 x 15 x 15 2.3686 2.9 
45 x 15 x 15 2.4364 5.8 
41 x 15 x 15 2.4542 6.6 
51 x 13 x 13 2.4886 8.1 

N o t e . R a = 5 x  104 , E k = 2 x  10 -3, Rg=100,  R , = 1 0 0  

dw ~w dw dp f2Pr'~'/2[-1 d2w d2w d2w] 

/ z  - 0.5\ 
- [ R ~ I - )  ~b-2(\Ra2PrEk2)x~ 1/2v (11) 

u a--x + v c~ + w ~z = \ P r  Ra)  LA 2 ax ~ + - -  + ay 2 aZ 2 _1 
(12) 

where R a = f l ( T  n - TL)Q2(~R +D)Da/vx is the diameter- 
based Rayleigh number, Ek = v / f l D  E is the Ekman number, 
Pr = v/x is the Prandtl number, fixed at 100 to represent a 
viscous liquid, R 0 = f~2 (~  + D )/g is the acceleration ratio, and 
R~ = 9t/D is the eccentricity. Including the aspect ratio, six 
parameters emerge. Four of these--Ra, Ek, R 0 and Rl--will 
be studied in detail. 

The hydrodynamic boundary conditions are 

u = v = w = O ,  a t x = O , x = l , y = O , y = l , z = O , z = l  

while the thermal boundary conditions are 

q~=l ,  a t x = 0  

q~ = - 1 ,  a t x = l  

~b = 1 - 2x, a t y = O , y = l , z = O , z = l  

The above equations were solved numerically using the 
algorithm of Patankar (1980) in the SIMPLE-C version 
suggested by Van Doormaal and Raithby (1984). A uniform 
51 x 15 x 15 mesh network was used to generate field data. 
Convergence of the solutions was accepted if the average 
residual and the successive relative errors in the dependent 
variables were both within 1%. 

The Nusselt number to be determined as a function of the 
system parameters was defined by 

QL 
Nu - (13) 

Ak(T. -- TL) 

where Q is the total heat transfer rate supplied through all the 
walls of the tube and the area ,4 is chosen as half of the total 
wall area of the tube, i.e., A = D 2 Jr 2LD. 

Since there appear to be no experimental or analytical results 
that can be used for direct comparison, it is not possible to 
confirm the present solutions independently. However, the 
program has been tested against the results presented by 
Mallinson and de Vahl Davis (1977); differences in the Nusselt 
number and maximum velocity were less than 2 percent. The 
uniqueness of the data was tested by using different input. 
Except where otherwise noted, the initial conditions had no 
noticeable effect on the final result. 

For further validation, the results in this paper, which were 
obtained on an FPS-164 Scientific Computer, were subjected 
to a grid test conducted on an IBM Rise 6000 Computer using 

different mesh sizes. All the meshes tested were equally good 
at describing the flow structure. A comparison of Nusselt 
numbers calculated from different mesh sizes is given in Table 
1. Also, heat transfer rates into and out of the system were 
calculated for all the data in this paper, the difference being 
within 2 percent. It is therefore suggested that the accuracy in 
the Nusselt number using the 51 × 15 × 15 grid system is about 
+ 5 percent. The ability of this mesh to capture flow behavior 
has been established previously (see Bontoux et al. 1986; Lock 
and Zhao 1992; Lock and Han 1989; Schiroky and 
Rosenberger 1984). 

Results and discussion 

The e f fec t  o f  the Ray le igh  n u m b e r  

Overall Nusselt number as a function of Rayleigh number is 
given in Figure 2. The shape and magnitudes shown are similar 
to those of the stationary horizontal thermosyphon (see Han 
1988; Lock and Zhao 1992; Lock and Han 1989), with the 
definition of Ra modified by replacing Q2(9t + D) with g. This 
suggests that the eccentric and horizontal thermosyphons have 
similar regime behavior. For Rayleigh numbers less than 102"5, 
heat is transferred mainly by conduction, even though 
convection occurs theoretically as long as there is a temperature 
difference between the two ends. From the definition of the 
Nusselt number, N u ~ l / l l  as R a ~ 0 .  Above R a =  10 2'5, 
convection gradually becomes more important and heat 
transfer increases significantly. As indicated by Lock and Han 
(1989), a boundary-layer flow regime begins at about Ra-107 
for this aspect ratio (A = 5). The range in which Ra is larger 
than 102.5 and smaller than 106 is appropriately described as 
an impeded regime. It is this regime that is the subject of this 
paper. 

The impeded regime, unlike the boundary-layer regime, is 
characterized by viscous effects propagating throughout the 
entire tube cross section (Lock 1992). Under these conditions, 
the slope of the Nu ~ Ra curve is 1.0, theoretically (Lock 1992 ). 
In Figure 2, a slope of about 0.9 occurs in the range of Ra from 
104 to l05. In the left half of the impeded regime, a concave 
curve joins the conduction regime; in the right half, a convex 
curve joins the boundary-layer regime. The impeded regime 
thus acts like an extended transition between the conduction 
and boundary-layer regimes. 

Ek = 2x10 3, Pr = 100, Rg = 100, RI=100 
1.6" 

1.2- 

0.8- 

0.4 

0.0 

-0.4 

-0.8 

-1.2 

Z 

O 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

log Ra 

Figure 2 Effect of Rayleigh number on heat transfer in an eccentric 
thermosyphon. O = numerical data from Lock and Han (1989) 
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Figure 4 Primary velocity field in plane z = 0.46: Ra = 5 x 104 

The details of heat transfer from each face are shown in 
Figure 3. The distribution and variations are similar to those 
of the horizontal stationary thermosyphon (Han 1988; Lock 
and Han 1989). Evidently, most of the heat addition takes 
place on the leading, trailing, and inner surfaces. 

The basic flow pattern in a stationary horizontal 
thermosyphon consists of a simple primary loop upon which 
is superimposed a secondary circulation induced by lateral 
temperature gradients. Figure 4 illustrates the primary 
(X-direction) flow of the corresponding eccentric thermo- 
syphon at Ra = 5 x 104. In the midlength region, the familiar 
two-filament flow is evident, but near the two ends the flow is 

more complicated. Figures 5 and 6 show the main flow profile 
and the secondary flow, respectively. At the hot (lower) end, 
under the influence of the direct buoyancy force, as in stationary 
horizontal thermosyphon, the fluid in a lateral plane will flow 
in the Y-direction to complete the main flow cycle. Under the 
influence of the Coriolis force, however, the flow in the 
Y-direction will induce a flow in the Z-direction. Since these 
two forces act together, the secondary flow is changed to the 
present S-shape. As seen in Figure 6, it is a clockwise vortical 
motion in the upper part, and an anticlockwise vortical motion 
in the lower part. Away from the ends, the Coriolis effect 
becomes weaker. At the midlength plane, two pairs of weak 
vortices, both induced by the lateral (radial) temperature 
gradients, were found. Over the length of the tube, these must 
become reconciled with the S-pattern in the end regions. 

Referring to the governing equations (Equations 9 to 11 ), if 
the Ekman number is fixed, when the Rayleigh number 
decreases the magnitude of the Coriolis term will increase 
relative to the buoyancy force. Hence, for smaller Rayleigh 
numbers, a stronger Coriolis effect will result; and for larger 
Rayleigh numbers, the opposite will be true. The primary 
circulation and the main flow profile at Ra = 5 x 103 are the 
same as for Ra = 5 x 104, except they are weaker. Figure 7 
shows the corresponding secondary flow field. Near the hot 
end, the secondary flow is the same as for Ra = 5 x 104 in 
Figure 6. With the Coriolis force relatively stronger, the end 
flow is propagated further towards the midlength plane. The 
two pairs of vortices found in Figure 6 are too weak to appear 
in Figure 7. 

With Ra = 106, the primary circulation, the main flow 
profile, and the secondary flow field are shown in Figures 8, 
9, and 10, respectively. For such a high Rayleigh number, the 
Coriolis force is weaker relative to the buoyancy force. As a 

Figure 5 

~ x = 0.49 

~ × ; 0.11 

= 0.05 
X 

y~ 

Ek = 2x10 "3, Pr = 100, Rg = 100, R I = 100 

Development of the primary velocity profile: Ra = 5 x 104 
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Figure 9 Development of the primary velocity profile: Ra = 106 
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result, the secondary flow in the end region is closer to that 
found in the stationary horizontal thermosyphon (Lock and 
Han 1984). The two pairs of vortices in the midlength region 
are correspondingly stronger. The twist of the main flow profile 
near the ends is restricted to near the side wall. 

of the principal terms, the pressure gradient, and the largest 
viscous force, in the X-direction momentum equation gives 

1 ~P  ~2U 
0 . . . .  + v - -  (14) 

p c3X c3y 2 

In the Y-direction, the balance of Coriolis force, buoyancy 
force, and pressure gradient gives 

1 ~P  
- 2 n w  . . . . .  f l(T - To)gV~ (15) 

p ~ Y  

which, like Equation 14, may be justified a posteriori. 
Eliminating the pressure, 

2t) t~W t93U 
= v + tiff291 (~T (16)  

When the Coriolis force balances the direct (radial) buoyancy 
force, as suggested by the flow profile, Equation 16 reveals that 

2f~W ~ 
- 0 ( 1 )  (17) 

fl~)2~TC 

where the superscript c indicates the corresponding scale of the 
variable : T ¢ = 0 ( T n - T L ). 

Likewise, a balance of the principal terms in the energy 
equation gives 

tgT ~T c~T t~2T 
U - - +  V - - +  W - - = ~ ¢ - -  (18) 

tgX t~Y ~Z t~Y 2 

Hence, when radial conduction is balanced by lateral, 
Coriolis-generated advection, Equation 18 reveals 

W¢(y~) 2 
- 0 ( 1 )  (19) 

~cZ c 

where Z c = 0(O). 

T L 

The ef fect  o f  the Ekman number  

The Ekman number, representing the relative importance of 
viscous and Coriolis effects, is always of major interest in the 
study of rotating systems. For  higher Ekman numbers, meaning 
a smaller Coriolis effect, the system will behave more like a 
stationary system. 

With other parameters constant (Ra = 5 x 104, Pr = 100), 
the flow pattern with Ek = 2 x 10- 3 has been presented above. 
For  a higher Ekman number, Ek = 5 x l0 -2, the primary flow 
circulation, the main flow profile, and the secondary flow field 
are shown in Figures 11, 12, and 13, respectively. The primary 
circulation is again a single cell. Near the end, the secondary 
flow is only slightly modified by the Coriolis force at the center 
of the tube. This modification is reflected in the main flow 
profile; the flow is slightly twisted and is stronger than at 
Ek = 2 x 10- a. In the midlength region of the thermosyphon, 
a bifilamental main flow is again present, and two pairs of 
vortices induced by lateral temperature gradients are formed. 

The individual-surface heat transfer rates as functions of 
Ekman number are plotted in Figure 14. For  Ekman numbers 
from 10-1 to 10 -2, the overall heat transfer rate decreases only 
slightly. Below Ek = 10- 2, however, the heat transfer rate drops 
more quickly. This appears to be because, as Ek decreases and 
the Coriolis effect increases, the secondary flow near the end 
is twisted more to an S-shape ; the direct buoyancy force is then 
balanced more closely by the Coriolis force. As a result, the 
main flow velocity is retarded and the heat transfer rate drops• 

The effect of Coriolis force on the heat transfer rate may be 
estimated from a scaling analysis of Equations I to 5. A balance Figure 11 

I 1 0  "3 

T H 

Y,V 

Ra = 5 x 1 0  4, Pr = 100, Rg = 100, R I = 100 

Pr imaryve loc i ty f ie ld  in planez = 0.46: Ek = 2 x 10 -2 
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Figure 12 Development  of  the primary veloc i ty  prof i le:  
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Using Equations 17 and 19, 

W c _ f l~2~TC _ l< EkRa 
2~ 2D 

where 

Ra = flTCf~2~D3/vtc, Ek = v / f l D  2 

and 

xD (yc)2  __ 
W ~ 

o r  

The heat transfer rate attributable to this Coriolis-driven 
advection may now be estimated from 

Q = q L D  = O ( p C p T C L W ~ Y  ~) 

Hence 

Nu = k-~  = 0 (20) 

The asymptote provided by Equat ion 20 is plotted in Figure 
14. It seems that the above analysis is an accurate representation 
of the essential physics in the lower reaches of the impeded 
regime, where Nu  oc Ra °-5. The largest neglected terms in 

Equations 14, 15, and 18 are about 1 percent of those retained. 
Behavior thus corresponds to a Coriolis-impeded regime in 
which the heat transfer rate decreases as the Ekman number 
decreases. It is quite possible that for even lower Ekman 
numbers the end flows may become unstable and break into 
cells ; the Coriolis-impeded regime would then be succeeded by 
a new regime in which heat transfer rates could rise 
substantially. The truth of this speculation must await further 
study. 

The ef fect  o f  the acce le ra t ion  rat io 

As the accelerat ion ra t io  R 9 = ~2 (9~ + D)/g decreases, g rav i ty  
becomes more impor tan t .  G rav i t y  in t roduces a body  force f ield 
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that is in the opposite direction to the temperature gradient 
for the arrangement being considered. The system is thus under 
the action of both direct and indirect buoyancy forces. The 
effect of acceleration ratio on Nusselt number is shown in Figure 
15. 

For  Rg from 100 down to 10, it is evident that the heat 
transfer rate changes very little. This suggests that as long as 
Rg is larger than 10, gravity can be neglected without any 
serious error in calculating the Nusselt number. When Rg 
decreases from 10 to 1, the Nusselt number increases 
substantially. 

At Rg = 1, with other parameters constant (Ra = 5 x 104, 
Ek = 2 x 10 -3, and R~ = 100), the flow pattern is similar to 
that at Rg = 100. In the main circulation, a tendency towards 
annular refluent flow appears near the ends. This is clearly due 
to the direct gravitational buoyancy force. 

The ef fect  o f  eccentr ic i ty 

The effect of eccentricity on Nusselt number is shown in Figure 
16. For  R~ larger than 10, it was found that the centrifugal force 
in the Y-direction can be treated as uniform, and the component 
of the centrifugal force in the Z-direction can be neglected. The 
flow pattern is the same. The Nusselt number is the same. For  

R~ less than 10, the heat transfer rate decreases gradually. The 
Nusselt number drops from 2.22 at Ri = 10 to 1.26 at R~ = 0. 

As R~ decreases, the centrifugal force field also decreases. It 
also has an increasing component in the Z-direction, but this 
has little effect on the flow pattern. Even at R~ = 0, when the 
inner surface coincides with the axis of rotation, the flow pattern 
is almost the same as at R~ = 100, except it is weaker. 

Conclusions 

In this paper, the flow pattern and heat transfer characteristics 
of the rotating eccentric thermosyphon were explored 
numerically under laminar, steady conditions. 

With the thermosyphon rotating about a vertical axis parallel 
to its centerline, the centrifugal force creates a body force field 
similar to that in a horizontal stationary thermosyphon. The 
body force field is perpendicular to the main temperature 
gradient; the system is therefore driven by indirect buoyancy 
force, except near the ends. A bifilamental main circulation was 
formed, with the cooler fluid moving down at the outer surface 
and the hotter fluid moving up at the inner surface. Near the 
closed ends, under the influence of both the buoyancy force 
and the Coriolis force, an S-shape secondary flow appeared; 
this secondary flow modified the main flow profile. 

The curve of Nusselt number against Rayleigh number was 
similar to that for a stationary horizontal thermosyphon in 
both magnitude and shape. Flow patterns were similar for all 
Rayleigh numbers. 

For  higher Ekman numbers, indicating a smaller Coriolis 
effect, the flow pattern was closer to that of a stationary system, 
and the flow was stronger. For  relatively low Ekman numbers, 
direct buoyancy forces near the end came into a closer balance 
with the Coriolis force. As a result, the main flow velocity was 
retarded, and the heat transfer rate decreased. 

With a reduced acceleration ratio R~, gravity becomes more 
important. An annular refluent flow was detected near the ends 
as the result of the gravity-induced buoyancy force. When 
Rg = 0( 1 ), the heat transfer rate was then found to increase. 

The change of eccentricity had little effect on the flow pattern. 
A lower heat transfer rate accompanied a decrease in R~. 
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